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a b s t r a c t

This paper introduces an original method for the guaranteed estimation of the Lipschitz
classifier accuracy in the case of a large number of classes. The solution was obtained as a
finite closed set of alternative hypotheses, which contains an object of classification with
probability of not less than the specified value. Thus, the classification is represented by
a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of
hypothetical classes is, the higher is the classification accuracy. This problem is relevant in
practical biometrics, when the number of analyzed samples amounts to tens of thousands,
and many of them are distinguished vaguely in the primary feature space.

© 2011 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

One of the main problems of stochastic sample classification is to estimate degree of similarity between a sample and
those classes that are located close in the metric of the feature space. A question arises: what is the formal mechanism for
the selection of classes, corresponding to a sample with a priori specified lower bound of the classification accuracy value?
This issue is extremely important in practical biometrics, when the number of classes can be millions, and many of them
can be poorly distinguishable in the feature space.

Typically, classifiers estimate the similarity of a sampleX(θ∗) regarding to class θ ∈ Θ (Θ is a set of classes, θ∗
∈ Θ is a true

index of the class to which the sample belongs) in a form of the so-called score-parameter f

θ |X(θ∗)


, f

θ | X(θ∗)


∈ R1. We

denote the score-parameter as a symbol f

θ | X(θ∗)


, and the class, to which actually the sample X(θ∗) belongs, as a symbol

χ

X(θ∗)


. It is obvious that θ∗

= χ

X(θ∗)


. Let the classification decision be made as follows:

θ̃ = ArgMax
θ∈Θ


f

θ |X(θ∗)


. (1)

Since classifiers have a stochastic nature, their outputs are random variables. The output of any classifier can be described
by the following statement:

f

θ |X(θ∗)


= Eθ∗ f (θ |X(θ∗)) + η


θ |X(θ∗)


.

Here,
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• θ∗
∈ Θ is index of the target object class;

• θ ∈ Θ is index of the testing hypothesis class;
• Eθ∗ f (θ |X(θ∗)) is the expected value of a random function f (θk|X(θ∗)) with specified parameters θ∗, θ ∈ Θ;
• η(θ |X(θ∗)) is a random function of the parameters θ∗, θ ∈ Θ .

Of course, the target object class index θ∗
∈ Θ is not explicitly observed.

But how can we estimate the classifier accuracy? The well-known methods are the ones that are based on exponential
approximation of conditional a posteriori probability distribution of the solution function (Platt, 1999; Wahba, 1999).
In this case, we consider a binary classification with classes w1 = 1 and w2 = −1. Let us denote the training set
by T = {(xi, yi) |i = 1, . . . ,N} , yi ∈ {−1, 1} and by P (wk | xi) — posteriori probability of xi corresponding to class
wk, k ∈ {1, 2}. As on Platt’s approach (Zadrozny & Elkan, 2002), it is proposed to use sigmoid approximation of P (wk | xi),
assuming that this function is continuous at x. This approximation has the following representation: P (class | input) =

P (wk | x) = (1 + exp (Ax + B))−1. As it was described by Platt, the constants A and B could be found using the so-called
‘‘cross-entropy error function’’ (Bishop, 1995). Following Platt (1999), the constants A and B are determined by solving the
following minimization problem:

ArgMin
A,B

{J(A, B)} .

Here, J(A, B) is the so-called ‘‘cross-entropy function’’:

J(A, B) = −


i


pi log


(1 + exp (Axi + B))−1

+ (1 − pi) log

1 − (1 + exp (Axi + B))−1

where pi = ((yi + 1)/2). The peculiarity of this method is a lack of theoretical validity to select an approximating
function (1 + exp (Ax + B)). In Zadrozny and Elkan (2002) it was shown that Platt’s method gives inadequate results for
certain test datasets, e.g. for Adult and TIC (The Insurance Company Benchmark) datasets, which are available in UCI ML
Repository (Blake & Merz, 1998). In case of a multi-class problem with a small cardinality of certain class j training set
T(j)

=


x(j)
i , j


|i = 1, . . . ,Nj


, Platt’smethod provides unacceptable results of a posteriori probability estimation (Bennett,

2000).
It is very important to realize that the quality of the classification decisions, ideally, should be evaluated in a probabilistic

sense. Approach based on the Platt calibration has an empirical basis. Estimation of the conditional probability of the correct
classification P


θ̃ = χ(X(θ∗))|θ∗

= Maxθ∈Θ(f (θ |X(θ∗)))

, which results from the use of Platt approach, is entirely defined

by the training set. If a training sample is unrepresentative (this case is very common in practical biometrics), estimation of
the conditional probability P(ω|θ∗

= Maxθ∈Θ(f (θ | X(θ∗)))) of the event ω : {θ̃ = χ(X(θ∗))}, following Platt’s approach,
may be ineffective.

Few interestingworks, giving a detailed theoretical analysis of SVM-classifier errors, have recently appeared, for example
Di-RongChen, QiangWu, YimingYing, andDing-XuanZhou (2004). Thiswork carries out a thorough research of regularization
error values boundaries, as well as the boundaries of the corresponding approximation error values for reproducing kernel
Hilbert spaces (in two classes separation case). The main focus of this paper is put on such method of regularization
parameter value selection that gives the highest accuracy of classification.

In this work we propose a new method for probabilistic estimation of the classification decision accuracy. Assume that
there exists a unique class θG

∈ Θ such that

θG
= ArgMax

θ∈Θ
(Eθ∗ f (θ |X(θ∗))),

and in this case θG
= θ∗. In fact, these constraints define the conditions that ensure the correct classification result in a

deterministic case. In a nondeterministic case, which is more practical, the stochastic component of the classifier output
gives an error in the classification decision. Let the absolute value of the stochastic component η


θ̃ | X(θ∗)


of f (θ̃) in (1) be

|η(θ̃ | X(θ∗))| > 0. Informally, if for the certain class θ1 ∈ Θ the inequality |f

θ̃ | X(θ∗)


− f


θ1 | X(θ∗)


| < |η


θ̃ | X(θ∗)


|

is true, then it is impossible to determine for sure which of these classes θ̃ and θ1 corresponds to the sample. Thus, these
classes are distinguishablewith respect to the sample, whichwas presented for the classification, only in probabilistic sense.
Wewill call such classes the probabilistically distinguishable classes, or the target sets. From a practical standpoint, it is very
important to define a formal procedure for the correct definition of these target sets.

It is imperative to ensure that the desired class θ∗
= χ(X(θ∗)) belongs to the target set with probability of not less than

a given value of Pc , Pc ∈ (0, 1). In this case, the classification results are yielded not as one class, but as a set of classes that
together constitute the target set. The research subject of this paper is a rigorous solution to guarantee a certain closed set
of classes (target set) to which the sample belongs with probability of not less than Pc . Naturally, the target set is defined
for the previously given classifier.

It should be noted that the so-called Lipschitz classifiers (Luxburg & Bousquet, 2004) correspond to a very wide type
of classifiers. This type includes such well-known and practically effective classifiers as SVM (Support Vector Machine),
Linear ProgrammingMachines and even NN (Nearest Neighbor)method. A variety of the Lipschitz classifiers and their broad
applicationmainly caused themajor focus on this type of classifierswithin the frames of this paper. The presentedmethod to
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estimate the classification accuracy can be applied to any type of Lipschitz classifiers. Themechanisms of Lipschitz classifier
construction and learning, however, are out of the scope of this research. Thus, within this article, Lipschitz classifiers are
considered to be given, research on their accuracy only is being carried out.

The approach suggested in this paper allows estimation of the Lipschitz classifier accuracy by determining the closed
confidence subset within a priori given set of classes. This set, having a specified confidence coefficient, contains an index
of classification object. The classification accuracy is determined by the number of alternative hypotheses included in this
confidence set (target set): the smaller the cardinality of the confidence set is, the higher the classification accuracy is. The
suggested approach provides the guaranteed accuracy of estimation, i.e. howwell we can expect the constructed confidence
set to contain a true object of classification with priory specified confidence coefficient.

Within the content of this article, cardinality of set X is denoted as |X |. The symbol Diam (Z) denotes the diameter of the
set Z and Diam (Z) = supz1,z2∈Z ∥z1 − z2∥.

2. A brief note on the Lipschitz classifiers

As mentioned above, the Lipschitz classifiers (Luxburg & Bousquet, 2004) are now widely prevalent in a number of
practical applications, such as biometrics, automatic text analysis, and in various mathematical economics applications.
For example, widely-spread SVM classifiers, Linear Programming Machines, and even Nearest Neighbor method are all
particular cases of Lipschitz classifiers. Let us discuss the concept of the Lipschitz classifiers inmore detail. The fundamentals
of class separation by means of large margin hyperplane go back to Vapnik’s and Chervonenkis’s works (1974). It was
demonstrated that using the principle of margin maximization between sets of different classes elements from training
data and a hyperplane separating these classes, allows to minimize the upper bound of the empirical risk and to increase
the classifier’s generalization ability. Note should be taken that marginal classifier construction is closely associated with
problems of isomorphic and isometric embedding of metric spaces into Banach or Hilbert spaces. In this case, the feature
parameters compact space (Z, d) (where d is ametric of that space, and Z is a set of feature parameters values) is isometrically
embedded into the target Banach space (B, ∥·∥) by means of the feature mapping φ : Z → B. The margin classifier is
constructed in subspace of the space (B, ∥·∥), where the convex sets are separated by hyperplane, as on Hahn–Banach
separation theorem. Particularly, when a metric space is embedded into Hilbert space, the well known Support Vector
Machine algorithm is used. Let us consider this topic in more detail. Generally speaking, a large margin classifier is a
classification rule such that most of the training samples are ‘‘far away’’ from classification boundary (some hyperplane
H in B), and the margin to the two classes is maximized. Let the set {(zi, yi) |i = 1, . . . , n } ⊂ Z × {±1} be the training
data. The convex hull of set F is denoted by C(F) =


i∈I αizi


i∈I αi = 1, ∀i∈Iαi > 0, zi ∈ F , |I| < ∞


. Let F+, F− be

training sets of the two classes ‘‘+’’ and ‘‘−’’, C(F+)∩C(F−) = ∅, B′ — the dual space of B. Bennett and Bredensteiner (2000)
showed that constructing the large margin classifier is equivalent to finding the distance d(C(F+), C(F−)) between C(F+)
and C(F−). In this case, d(C(F+), C(F−)) = infp+∈C(F+),p−∈C(F−)

p+
− p−

, and it was concluded that d(C(F+), C(F−)) =

supT∈B′ infp+∈C(F+),p−∈C(F−)


T , p+

− p−

∥T∥

−1. Thereby, we have the equivalence optimization problem:

Inf
T∈B′,b

∥T∥ subject to
n
∀
i=1

(yi (⟨T , zi⟩ + b) ≥ 1) .

As a result, largemargin classifier is the solution of this optimization problem in a formof decision function f (z) = ⟨T , z⟩+b.
In this case, the margin value is given by ∥T∥

−1. Let us denote by AE(Z) the Arens–Ells space (Arens & Eells, 1956), by AE(Z)′

— the dual space to AE(Z) (i.e. the space of all continuous linear forms on AE(Z)), and the Lipschitz set of functions by:

Lip(Z) := {f |Z → R; ∀f ∃L]0, ∞[: ∀x, y ∈ Z : |f (x) − f (y)| ≤ Ld(x, y) } .

Here, L(f ) is the smallest constant L such that |f (x) − f (y)| ≤ Ld(x, y) for all x, y ∈ Z . Luxburg andBousquet (2004) suggested
embedding Z isometrically into the Banach space AE(Z) :


Φ : Z → AE(Z), Ψ : Lip(Z) → AE(Z)′


. Here, mapping Φ is an

isometric embedding of Z into AE(Z), mapping Ψ between Lip(Z) and AE(Z)′ is such that Lip(Z) is isometrically isomorphic
to AE(Z)′. Also, it was suggested to construct large margin classifier by solving the following optimization problem:

Inf
f∈Lip(Z)

L(f ) subject to
n
∀
i=1

(yif (xi) ≥ 1) .

The solution of this problem is called hard margin Lipschitz classifier, and its margin is defined as 1/L(f ) (Luxburg &
Bousquet, 2004). On the other hand, soft margin Lipschitz classifier was constructed resulting from the solution of the
following optimization problem:

Inf
f∈Lip(Z)

λL(f ) + n−1


i

l (yif (zi)) , l (yif (zi)) = max {0, 1 − yif (zi)} ,

where λ is a trade-off constant. Besides the isometric embedding (Z, d) into AE(Z), there are many different isometric
embeddings which could be used instead. For example, Hein and Bousquet (Hein & Bousquet, 2003) studied Kuratowski
embedding of a metric space Z into the space of continuous function to construct a large margin classifier. The Lipschitz
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classifier decision function has a small Lipschitz constant. This construction goes with regularization principal, which avoids
using functions with a high variation.

The Lipschitz classifiers include a wide class of classification algorithms. That is why the results of this study deals
specifically with the Lipschitz classifiers.

3. Problem statement

Let (Z, d) be a compact metric space of the feature parameters, d-a metric of this space, Z-a set of values of feature
parameters. There exists a specified set of indices for classes Θ = {θk} ⊆ R1, |Θ| < ∞ such that θ2 ≠ θ1 ∈ Θ : d(θ2, θ1) >

Classifier f : Z → Θ is a function that divides the space (Z, d) into m = |Θ| classes.

Let us assume that the classifier f , denoted as f (θ | X(θ∗)), is Lipschitz margin classifier (Luxburg & Bousquet, 2004). Here,
f (θ | X(θ∗)) is a stochastic function, dependent explicitly on θ ∈ Θ and implicitly — on θ∗

∈ Θ , where θ ∈ Θ is the
hypothesis index. The classification decision is made according to (1).

The goal of this paper is to determine such a confidence set (target set) of indices Ξ(θ̃) ⊆ Θ , based on the observed data
analysis and the result of point classification, for which the following statement is true: P(θ∗

∈ Ξ(θ̃)) ≥ Pc . In this case,
the confidence coefficient Pc is a priory specified.

4. Solution method

As earlier denoted, f

θ | X(θ∗)


_corresponds_to_margin_classifier._Additionally,_for_the_specified_parameter

c ∈ (0, ∞ ) , let us consider the following auxiliary set:

Ξ(θ̃ | c,X(θ∗)) =


θ ∈ Θ

f (θ̃ | X(θ∗)) − f (θ | X(θ∗))

 ≤ c


.

The main result of this paper is the following theorem:

Theorem 1. Let the following conditions be true:

1. ∀θ, θ∗
∈ Θ : Eθ∗


η

θ | X(θ∗)


= 0.

2. ∀θ∗
∈ Θ : Maxθ∈Θ(Eθ∗ f (θ | X(θ∗))) = Eθ∗ f (θ∗

| X(θ∗)), |{θ#
∈ Θ|Eθ∗ f (θ#

| X(θ∗)) = Maxθ∈Θ(Eθ∗ f (θ | X(θ∗)))}| = 1.
3. ∀θ1, θ2, θ

∗
∈ Θ∃L ∈]0, ∞[:

f θ1 | X(θ∗)

− f


θ2 | X(θ∗)

 ≤ Ld (θ1, θ2) a.s.

Then, if c(Pc) = L · Diam (Z) (1 − Pc)−0.5 > 0 we have

∀θ∗
∈ Θ : Pθ∗


θ∗

∈ Ξ


θ̃ | c(Pc),X(θ∗)


≥ Pc .

The proof of this theorem is presented in the Appendix.
The second condition of the theorem implies that, when no noise is present, the function reaches maximum at the

classification object index. In fact, this is the necessary condition for proper classification by means of this discriminant
function. At training stage, parameters of the classifier should be chosen in such a way that condition 2 of the Theorem 1
is met at least for the training set. In case if this condition is not fulfilled, it is reasonable to consider the following positive
constant ϑ∗ (Θ):

ϑ∗ (Θ) = Inf

ϑ ∈ R1

∀θ∗
∈ Θ :


Max
θ∈Θ


Eθ∗ f


θ | X(θ∗)


− Eθ∗ f


θ∗

| X(θ∗)


≤ ϑ


.

The constant ϑ∗ (Θ) determines the minimum upper bound of

Maxθ∈Θ


Eθ∗ f


θ | X(θ∗)


− Eθ∗ f


θ∗

| X(θ∗)


for all θ∗
∈

Θ . The value of ϑ∗ (Θ) is estimated numerically at the training stage of the classifier. It can be shown that in this case
Theorem 1 would be true if c(Pc) = ϑ∗ (Θ) + L · Diam (Z) (1 − Pc)−0.5.

The third condition implies that there exists a Lipschitz constant for this discriminant function. The fourth condition
presupposes absolute value limitedness of the discriminant function in the set Θ . Thus, if the conditions of Theorem 1 are
satisfied, the discrete set of hypotheses Ξ


θ̃ | c(Pc),X(θ∗)


contains the target object index θ∗ with probability of not less

than Pc . The classification is represented by a set Ξ

θ̃ | c(Pc),X(θ∗)


of hypothetical classes. However, when the introduced

method is applied in practice, it is crucial that for the given value of Pc the value of cardinality |Ξ

θ̃ | c(Pc),X(θ∗)


| would

be relatively small. One important practical example will let us see whether this is satisfactory.

0.

Andrey
reply 1
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5. Practical example: voice biometric application

The output of biometric samples classification system always represents a set of classes that correspond to the tested
sample with varying degrees of reliability. In this case, a possibility of bounding the cardinal number of this set from
above is extremely important. For example, the problem of finding a human face in a database of photographic images
may necessitate searching among the millions of samples. At the same time many face images differ very insignificantly,
so there is always a high probability of making a false identification decision which may lead to very serious practical
consequences. Therefore, it makes sense to choose an entire set of classes in stead of one class as the results of biometric
samples classification. The chosen set of classes should be further studied, possibly involving expert methodology. Since
expert research methods are very expensive, it is important to relevantly reduce the cardinality of the set chosen for
further expert examination. Similar situation is also typical for biometric applications associated with identification of a
person using a sample of his/her voice. Same as in facial recognition applications, search is carried out across the database
containing hundreds of thousands and evenmillions of samples. The systems of automatic identification of a person that use
a voice sample are now growing ever more widespread. Human voice as an object of biometric research is rather complex,
comparatively to use of a facial image or a fingerprint for identification. This is the exact reason why voice biometrics is a
good example to estimate the effectiveness of the proposed technology.

As an example of practical use of the suggested algorithm, evaluation of the target speaker identification accuracy was
considered. In this case our goal is to determinewhich voicewithin the known voices group bestmatches the analyzed voice
sample. Thus, we have a phonogramwith a voice sample of a priori unknown speaker; however, it is known that this speaker
is one of the D known speakers. The task is to determine the speaker to whom the voice sample on the phonogram belongs.
This task has significant practical value. A large D leads to the issue of having the recognition system output in a form of
quite long list of voice samples, each closely matching the target voice sample. However, most of the known classifiers do
not provide theoretically justified outputs, and the voices similarity/dissimilarity degree is not theoretically justified either.
So, to justify which voices of the ‘‘roughly similar’’ voices set should be disregarded in further identification, very expensive
expert analysis methods are to be used. To effectively address this problem the confidence set approach appears to be quite
promising.

Thus, we denote the cardinal number of the alternative speakers set as D. The computational investigation was based
on the speech corpus which consisted of voice samples that belonged to 92 different speakers. Therefore, the number of
classes (different speakers) D was equal to 92. Every speaker’s speech was recorded twice with the same conditions. SNR
value of ∼20 dB was guaranteed during recording. These two recordings of the same speaker’s speech were made with a
few days gap. Thus, the speech corpus that was used for research consisted of 184 phonograms. Phonograms were recorded
in different communication channels, including GSM, CDMA and UMTS. In this case every speaker class was presented by
only two phonograms of the same speaker containing at least 100 s of the pure speech. In voice biometrics this approach
allows to partly compensate high variability of human voice (in different time slots speaker’s voice can differ strongly). We
introduce special notations for phonograms corresponding to the same speaker, but recorded in different time slots.

The set of these phonogramswill be referred to as ‘‘speech corpus’’. The phonogram of speaker θ recorded first is denoted
as Ph(−)

θ and the phonogram recorded later is denoted as Ph(+)
θ . If phonogram Phwith a voice sample of speaker θ was used

to calculate sample λ, we denote this as λ (θ | Ph).
Special voicemodels for each phonogramwere developed a priori andwere aimed to search for the target speaker in this

speech corpus. The first stage of the voicemodels building is feature extraction stage. The second stage is the approximation
of the probability distribution function of the feature vectors by semi-parametric multivariate probability distribution
models, so-called Gaussian Mixture Models (GMM). The realization has taken place in the context of the open source ALIZE
Toolkit (ALIZE, 0000) and SPRO (Gravier, 2003) (feature extraction stage). In this paper one kind of the well known speech
signal acoustic features was specified: Linear-Frequency Spaced Filterbank Cepstrum Coefficients (LFCC) (Xing & Hansen,
2009). In our case these features are based on 19 linear filter-bank (from 300 to 3400 Hz) derived cepstra. Thus, 19 static
and 19 first-order delta coefficients were used, giving the feature orderm = 38.

Those coefficient vectors are computed on a 20 ms window with 10 ms shift. As previously stated, approximation of
the feature vectors probability distribution is based on Gaussian Mixture Model, which has an ability to form smooth
approximation to arbitrary-shaped densities. GMM is one of the principal methods of modeling speakers for text-
independent speaker identification systems now. Practical use of GMM has proven its high efficiency in solving problems
of speaker identification. GMM of speaker s feature vectors distribution is a weighted sum of J components densities and
given by the equation:

P (x |λs ) = wsBT
s (x),

where x is a randomm-vector,ws =

ws1, . . . , wsJ


∈ RJ , Bs(x) =


Bs1 (x) , . . . , BsJ (x)


∈ RJ ,

∀
s,i
Bsi (x) =


(2π)m/2

|Σsi|
1/2−1

exp


−
1
2

(x − µsi)
T Σ−1

si (x − µsi)


, λs = {(wsi, µsi, Σsi) |i = 1, J} .

In general, diagonal covariance matrices Σsi are used to limit the model size. The model parameters λs characterize a
speaker’s voice in the form of a probabilistic density function. During training, those parameters are determined by the
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well-known expectation maximization (EM) algorithm (Blimes & Gentle, 1998). In this experiment approximation value
J was equal to 1024. Thus, for speaker identification each speaker is modeled by a GMM and is referred to as his model
parameters λ.

The solution of the classification problemwas obtained by using the multi-class Support Vector Machine (SVM) method.
SVM is a state-of-the-art learning machine based on the structural risk minimization induction principle (Hearst, Dumais,
Osman, Platt, & Scholkopf, 1998). The one-against-all method was used to decompose the D-class problem into a series of
two-class problems and construct D(D − 1)/2 binary SVM-classifiers, each of which separates one class from all the rest.

Thus, the i-th SVM is trained with all the training examples of the i-th class with positive labels, and all the others
— with negative. In this case we have the training set Λ = {(λi, yi)}Ni=1 , yi ∈ {1, . . . ,D}, N = 184. For each class θ ,
θ ∈ Θ, Θ = {1, . . . ,D} convenient SVM classifier was developed with decision function:

f (θ | λ) = wT
θ φ(λ) + bθ =

N
i=1

αp
i
ỹi(θ)K(λi, λ) + bθ ,

where

ỹi(θ) =


1, if i = θ,
−1, if i ≠ θ.

The parameters wT
θ , bθ were defined so that

minimize
wθ ,bθ ,ξ

: L(wθ , ξ
θ ) =

0.5 ∥wθ∥
2
+ C

N
i=1


ξ θ

i

s.t. ỹi(θ)

wT

θ φ(λ) + bθ


≥ 1 −


ξ θ

i ,


ξ θ

i > 0

ξθ
=

ξθ

1 ,

ξθ

2 , . . . ,


ξθ

N


∈ RN . Here, C is trade-off parameter, so-called soft margin parameter. The effectiveness of

SVM is based on the choice of soft margin parameter C . Different values of C were tried and the one with the best cross-
validation accuracy was picked. In this practical example, we used the Bhattacharyya divergence to measure the degree
of similarity between two probability distributions (GMMs). Following (Chang Huai, Kong Aik, & Haizhou, 2009; Jebara &
Kondor, 2003; Kailath, 1967) the Bhattacharyya-kernel K


λs, λf


for two GMMs λs and λf is given by

K

λs, λf


=

1
8

J
i=1

µsi − µfi
T Σsi + Σfi


2

−1 
µsi − µfi


+

1
2

J
i=1

ln

 (Σsi+Σfi)
2

|Σsi|
Σfi


−

1
2

J
i=1

ln

wsiwfi


.

At the stage of classification, the sample λ corresponded to θ̃ (λ) class when, having θ = θ̃ (λ), there is a maximum value
of function f (θ | λ) in the set Θ = {1, . . . ,D}. That is

θ̃ (λ) = ArgMax
θ∈Θ

(f (θ | λ)) .

Let us denote the index of the class of the sample λ as θ∗(λ). In this case the target set (confidence set) for the value
θ∗(λ) will be denoted as Ξ(θ̃(λ) | c(Pc), λ). For the speech corpus, used in the experiment, the truth of conditions (1)
and (2) of Theorem 1 has been verified by numerical analysis. The Lipschitz constant L was estimated numerically too:
L = Supp1 ≠p2 ,λ


∥f (p1 | λ) − f (p2 | λ)∥ ∥p1 − p2∥−1. Thus, for the sample λ, the target set for θ∗(λ) is

Ξ(θ̃(λ) | c(Pc), λ) =


θ ∈ {1, . . . ,D} |

f (θ̃(λ) | λ) − f (θ | λ)

 ≤ c(Pc)


.

For a class θ , θ ∈ {1, . . . ,D}, the sample λ

θ | Ph(+)

θ


∈ Λ corresponding to phonogram Ph(+)

θ will be denoted as
λ

(+)
θ , yθ


, and the sample λ


θ | Ph(−)

θ


∈ Λ corresponding to phonogram Ph(−)

θ will be denoted as

λ

(−)
θ , yθ


. Thus,

λ
(+)
θ , yθ


and


λ

(−)
θ , yθ


were constructed using phonograms Ph(+)

θ and Ph(−)
θ , containing voice of the same speaker θ . But all

of these phonograms were recorded at different times and under different acoustic conditions. It is very important to note
that the phonograms Ph(+)

θ and Ph(−)
θ may correspond to different psycho-physiological states of the speaker θ . This factor

significantly complicates the speaker identification. Therefore, the problem of speaker identification is an excellent example
to demonstrate the efficiency of the proposed algorithm for evaluating decision reliability of the classification problem.

Let the result of the classification be index of the class θ∗(λ). As it wasmentioned earlier, the target set for the parameter
θ∗(λ) would be denoted as Ξ (−)


θ̃ (λ) | c(Pc), λ


(this set was obtained as the result of this numerical experiment). It

should be noted that the database used for the numerical study consisted of phonograms of real voices. Some of these
voices were quite similar and weakly differed in the feature space. Conversely, some voices were very distinctive (e.g.: a
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very high- and very low-pitched), and therefore greatly differed from other voices in the feature space. Roughly speaking,
in this case the inequality |f (θ̃ | λ) − f (θ | λ)| ≤ c(Pc) holds for a relatively small number of classes θ ∈ {1, . . . ,D}, so the
cardinal number of Ξ (−)(θ̃(λ) | c(Pc), λ) is small. On the other hand, some voices differ slightly. Therefore, for these voices
inequality |f (θ̃ | λ) − f (θ | λ)| ≤ c(Pc) will hold for a relatively large number of classes θ ∈ {1, . . . ,D}, and the value
|Ξ (−)(θ̃(λ) | c(Pc), λ)| will be relatively large. Thus, the target sets that were built as a result of numerical experiment for
different voices (classes) with non-zero probability may have different cardinalities.

During the numerical experiment target sets were built for each GMM-vector λ(θ | Phθ (k)), where θ is a number of the
class, k is a number of the particular phonogram Phθ (k) within the class θ . For example, the target set corresponding to the
GMM-vector λ(θ | Phθ (k)) will be denoted as Ξ (θ | c(Pc), λ(θ | Phθ (k))).

Numerical experiments were carried out as follows:

• classifier training for θ class was based on the set Λ(+)
= {(λi, yi)}Ni=1 \


λ

(+)
θ , yθ


, yi ∈ {1, . . . ,D};

• θ class testing was based on the set Λ(−)
= {(λi, yi)}Ni=1 \


λ

(−)
θ , yθ


, while the phonogram Ph(+)

θ was partitioned

into four phonograms

Ph(+)

θ (k) | k ∈ {1, . . . , S}


, S = 4 of equal durations. For each class θ elements of the set
λ(θ) = {λ (θ | Phθ (k)) | k = 1, 2, . . . , S} were used as test samples. Thus, for each class θ the corresponding target
sets Ξ (θ | c(Pc), λ (θ | Phθ (k))), k ∈ {1, 2, . . . , S} were numerically determined.

What could be the requirements to the target set Ξ (θ | c(Pc), λ(θ | Phθ (k)))? First, the cardinality of the set
Ξ (θ | c(Pc), λ(θ | Phθ (k))) must be as small as possible, and second, the true value of the class θ should be included
in this set. Obviously, in theory it is possible that true value of θ-class would not be included into target set
Ξ (θ | c(Pc), λ(θ | Phθ (k))) as a result of numerical experiment. In this case, the situation of θ ∉ Ξ (θ | c(Pc), λ(θ | Phθ (k)))
is assumed absolutely unacceptable from a practical point of view. To accommodate this requirement in the process of
numerical experiment, we consider the following function:

χ (θ, Ξ (θ | c(Pc), λ(θ | Phθ (k)))) =


1, if θ ∈ Ξ (θ | c(Pc), λ(θ | Phθ (k))) ,
0, if θ ∉ Ξ (θ | c(Pc), λ(θ | Phθ (k))) .

Suppose that, as a result of numerical experiment, all of target sets for N classes are built. In this case the parameter
X(N) = 100 ·

N
θ=1

S(θ)
k=1 χ (θ, Ξ (θ | c(Pc), λ(θ | Phθ (k)))) S(θ)−1


N−1


characterizes the percentage of such cases

when true value of a class is included in the appropriate target set. Here, S(θ) = |λ(θ)|.
The greater the value of X(N) is, the better is the quality of the classification accuracy estimation algorithm. Obviously,

the ideal value of X(N) is equal to 100%. Furthermore, the parameterΞ (−)
θ (c(Pc))

 =

S(θ)
k=1

|Ξ (θ | c(Pc), λ(θ | Phθ (k)))| (S(θ))−1

represents the average power value of Ξ (θ | c(Pc), λ(θ | Phθ (k))) target set; the power values correspond to all GMM-
vectors λ(θ | Phθ (k)) of θ-class target set. Besides, the value4(−)(c(Pc))

 = (N − 1)−1
N−1
i=1

Ξ (−)
i (c(Pc))


is the average power of Ξ (−)

θ (c(Pc)) sets over all classes θ ∈ {1, 2, . . . ,D}.
The value of

4(−)(c(Pc))
 characterizes the classification accuracy averaged over all classes. Indeed, the smaller the value

of
4(−)(c(Pc))

 is, the lower is the average power of target set, and the higher is the classification accuracy.
For a certain class θ let us consider the set {Ξ (θ | c(Pc), λ (θ | Phθ (k))) | λ (θ | Phθ (k)) ∈ λ(θ)}, which consists of target

sets, corresponding to different λ (θ | Phθ (k)) ∈ λ(θ). In this case the actual number of matching elements of these sets will
characterize the algorithm robustness to random variations of samples parameters. Let us denote percentage of matches in
sets Ξ (θ | c(Pc), λ (θ | Phθ (i))) and Ξ (θ | c(Pc), λ (θ | Phθ (j))) by πθ (i, j | Pc). Obviously, πθ (i, j | Pc) ∈ (0, 100). An ideal
situation, of course, is when πθ (i, j | Pc) = 100%, i.e. the sets Ξ (θ | c(Pc), λ (θ | Phθ (i))) and Ξ (θ | c(Pc), λ (θ | Phθ (j)))
are identical. On the contrary, the worst situation is when πθ (i, j | Pc) = 0%. Now, the value of π (Pc), characterizing the
average uniform robustness over all classes, is to be determined:

π (Pc) =


θ∈{1,...,D}

 
i,j∈{1,2,...,S}

πθ (i, j | Pc)

 
D · S2

−1
.

During the numerical experiments we assumed that ∀i (S = |λ(i)| = 4). We will name π (Pc) averaged indicator of
algorithm robustness.

Table 1 contains results of numerical analysis. Here, Pc is the confidence coefficient,
4(−)(c(Pc))

 is the average
cardinality (power) of the target sets over classes θ ∈ {1, 2, . . . ,D}, X(N) is the percentage of such events when true



112 A.V. Timofeev / Journal of the Korean Statistical Society 41 (2012) 105–114

Table 1
The dependence of the target set cardinality on the coefficient Pc .

Pc (confidence coefficient)
4(−)(c(Pc))

 (average cardinality of
the target set)

X(N) (percentage of the events when true
value of class indices is included into the
corresponding target set) (%)

π (Pc) (average indicator
of algorithm robustness)
(%)

0.95 12 100 87
0.90 8 100 89
0.85 5 100 92
0.75 3 100 94

Table 2
The dependence of the target set cardinality on the coefficient Pc .

Pc (confidence
coefficient)

4(−)(c(Pc))
 (average

cardinality of the target
set)

X(N) (percentage of the events
when true value of class indices is
included into the corresponding
target set) (%)

0.95 2 99
0.90 2 95
0.85 1 89
0.75 1 81

value of the θ-class index is included into the corresponding target set Ξ(θ | c(Pc), λ(θ | k)). In other words, X(N) is the
percentage of incidents when χ(θ, Ξ(θ | c(Pc), λ(θ | k))) = 1. The third column contains the values of the indicator π(Pc).

Those results can be considered promising and encouraging for practical use. Indeed, if we have only 3 (in average)
suspects with Pc = 0.75 it gives us a good possibility for final identification decision using a very expensive expert methods.
Thus, we have a very impressive possibility to improve the efficiency level of speaker identification business processes in
many practical cases. As it was expected,

4(−)(c(Pc))
 increases with increasing Pc . On the other hand, π(Pc) decreases

comparatively slowly with increasing Pc .

6. Simulation study

Let us consider numerical study of a relatively simple example of multiclass classification, where the number of classes
D = 10. The training data had been generated bymeans of two-dimensional Gaussian distributions. In this case the training
classes θ , θ ∈ {1, 2, 3, . . . , 10}, were independently generated from N (mθ , σ I). Here, mθ ∈ M,

M = {(0, 0) , (0, 1) , (0, −1) , (1, 0) , (−1, 0) , (−1, −1) , (1, −1) , (1, 1) , (2, 1) , (2, 0)} ,

and σ = 1, I = diag(1, 1). The sample sizes are as follows: 300 for the training data (100 for every class) and 900 for the
testing data (300 for every class). We used Bhattacharyya Kernel-based SVM classifier. The results of this numerical study,
shown in Table 2, once again illustrate the effectiveness of the proposed approach.

As we can see, in all of the numerical experiments the value X(N)/100 approximately corresponds to Pc . However,
X(N)/100 > Pc . In other words, the experimentally obtained estimate X(N)/100 of probability Pθ∗


θ∗

∈ Ξ

θ̃ | c(Pc)


is somewhat larger than the theoretically predicted value of Pc . This does not contradict the Theorem 1. The inequality
X(N)/100 > Pc is based on excessive caution in constructing the target setsΞ

(−)
i (c(Pc)) of the proposedmethod. Following

the method, only the first and second moments of the probability distribution of stochastic component η(·) were taken
into account when constructing Ξ

(−)
i (c(Pc)). Hence, the experimentally obtained estimate X(N)/100 of the probability

Pθ∗


θ∗

∈ Ξ

θ̃ | c(Pc)


is significantly larger than the confidence coefficient Pc by magnitude, which is guaranteed by

the proposed method. The value of (X(N)/100 − Pc) can be significantly reduced when considering a priori probability
distribution of the component η(·). In fact, taking into account this a priori information can lead to improved efficiency of
the proposed method and therefore represents an interesting topic for further investigations.

7. Conclusion

The guaranteed estimates of the Lipschitz classifier accuracy, suggested in this paper, are primarily designed to be used
in case of large number of classes. In this case the classification is represented by a set of hypothetical classes, and this
set contains the object of classification with probability of not less than the specified value Pc . Suggested approach has a
clear theoretical foundation and is easy to be understood by practitioners, therefore is promising for practical use. A simple
rule for estimating the classification efficiency: ‘‘the smaller the cardinality of the target set is, the higher is the accuracy of
classification’’ is comprehensible by a broad variety of users. A practical example specified in this paper clearly illustrates
the perspectives of practical use of the proposed estimation.
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Appendix

Proof of Theorem 1. ‘‘X implies Y ’’ is to be denoted as X ⇒ Y . ‘‘event ω(1) results in event ω(2)’’ is to be denoted as
ω(1) ⊂ ω(2). Additionally, for the specified parameters θ1, θ2 ∈ Θ , let us consider the following auxiliary function:

F(θ1, θ2 | θ2) = Eθ2


f (θ1 | X(θ2))


− Eθ2


f (θ2 | X(θ2))


.

Let us consider the following:

f (θ̃) − f (θ) = Eθ∗ f (θ̃ | X(θ∗)) + η(θ̃ | X(θ∗)) − Eθ∗ f (θ | X(θ∗)) − η(θ | X(θ∗))

=


Eθ∗ f (θ̃ | X(θ∗)) − Eθ∗ f (θ | X(θ∗))


+


η(θ̃ | X(θ∗)) − η(θ | X(θ∗))


= F(θ̃ , θ | θ∗) +


η(θ̃ | X(θ∗)) − η(θ | X(θ∗))


.

We denote ∆η

θ̃ , θ


=


η(θ̃ | X(θ∗)) − η(θ | X(θ∗))


. Following condition 2, we have:

θ̃ ∈ Θ : F(θ̃ , θ∗
| θ∗) =


Eθ∗ f (θ̃ | X(θ∗)) − Eθ∗ f (θ∗

| X(θ∗))


≤ 0.

The value |F(θ̃ , θ∗
| θ∗)| cannot be zerowhen the random component η(θ̃ | X(θ∗)) is not zero. In case if it is absent and based

on condition 2, we have: F(θ̃ , θ∗
| θ∗) = 0 and θ̃ = θ∗


θ̃ = Arg Maxθ∈Θ


Eθ∗ f (θ̃ | X(θ∗))


. Thus, the following implication

is assumed:
F(θ̃ , θ | θ∗) = 0


⇒

θ = θ∗


. (2)

The following interpretation is possible:

Ξ(θ̃ | c(Pc)) =


θ ∈ Θ |

F(θ̃ , θ | θ∗) + ∆η

θ̃ , θ

 ≤ c(Pc)


.

We denote δ = c(Pc) − ∆η

θ̃ , θ


and consider the following events:

ω0 :

∆η

θ̃ , θ

 ≤ c(Pc)


, ω1 :


0 <

F(θ̃ , θ | θ∗)

 ≤ δ


, ω2 :


F(θ̃ , θ | θ∗) = 0


,

ω3 :


θ∗

∈ Ξ(θ̃)


.

Considering (2) in the set Ξ(θ̃ | c(Pc)), the following statement is true:

ω0 ⊂ ω1 ∪ ω2 ⊂ ω3. (3)

Based on condition 3, we can affirm that:

Eθ∗


∆η


θ̃ , θ

2
≤ Eθ∗


f

θ1 | X(θ∗)


− f


θ2 | X(θ∗)

2
≤


∞

−∞


f

θ1 | X(θ∗)


− f


θ2 | X(θ∗)

2
ρ(x | θ1, θ2, θ

∗)dx

≤


∞

−∞

L2d2 (θ1, θ2) · ρ(x | θ1, θ2, θ
∗)dx ≤ L2d2 (θ1, θ2)


∞

−∞

ρ(x | θ1, θ2, θ
∗)dx

≤ L2 (Diam (Z))2 . (4)

Here, ρ(x | θ1, θ2, θ
∗) is probability density distribution of the random value


f

θ1 | X(θ∗)


− f


θ2 | X(θ∗)


with fixed

parameters θ1, θ2, θ
∗

∈ Θ . Considering condition 1, we have:

Eθ∗


∆η


θ̃ , θ


= 0.

In this case, taking into account Chebyshev inequality and item (4), for any C > 0, we have:

∀


θ̃ , θ, θ∗

∈ Θ, C > 0


: Pθ∗

∆η

θ̃ , θ

 ≤ C


> 1 −

Eθ∗


∆η


θ̃ , θ

2
C2

> 1 −
L2 (Diam (Z))2

C2
.

Therefore,

∀


θ̃ , θ, θ∗

∈ Θ


: Pθ∗

∆η

θ̃ , θ

 ≤ c(Pc)


> 1 −
L2 (Diam(Z))2

c(Pc)2
.
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It is obvious that if

c(Pc) = L · Diam (Z) (1 − Pc)−0.5

the following equality is correct:

1 −
L2 (Diam (Z))2

c(Pc)2
= Pc .

In this case

∀


θ̃ , θ, θ∗

∈ Θ


: Pθ∗

∆η

θ̃ , θ

 ≤ c(Pc)


≥ Pc,

and considering (3), we have:

Pθ∗ (ω3) = Pθ∗


θ∗

∈ Ξ(θ̃ | c(Pc))


≥ Pc .

Theorem is proved. �
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